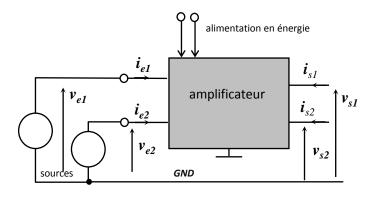
# EN2 Amplification petit signal





# Intérêt de l'amplification

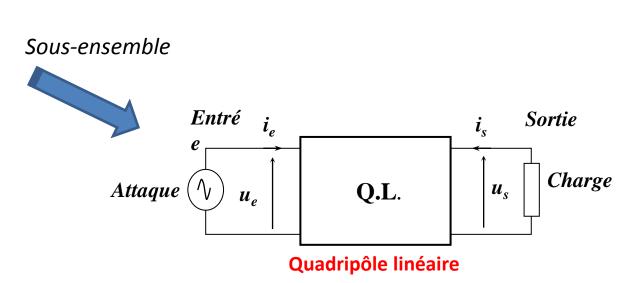
- Pourquoi amplifier un signal ?
  - Entrée : Enregistrement numérique, signal médical (ECG) :
    - ∘ signal en mV ou  $\mu V$  et  $mA \Rightarrow \mu W$
  - Sortie: Haut parleur (100W), tube cathodique (2000V)...
    - o signal en V et qq centaines de mA voir qq  $A \Rightarrow W$




Il faut selon les cas, augmenter la tension ou/et le courant du signal d'entrée, et donc sa puissance : c'est le rôle principal d'un amplificateur

- Classification des amplificateurs
  - Petits signaux : à l'intérieur de la chaine de traitement électronique.
  - Petits signaux différentiels : idem en réduisant le bruit.
  - De puissance : permet de piloter des actionneurs électriques ou électromécanique en sortie.

# Structure générale


- Les quadripôles
  - Cas particulier le plus fréquent



### Système MIMO

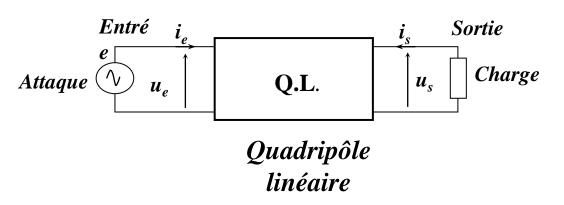
Mise en équation complexe car 8 grandeurs liées Exemple de cas simple: Ampli de tension parfait

$$V_{s1} = A_{11}V_{e1} + A_{12}V_{e2}$$
  
 $V_{s2} = A_{21}V_{e1} + A_{22}V_{e2}$ 



Simplification du cas MIMO

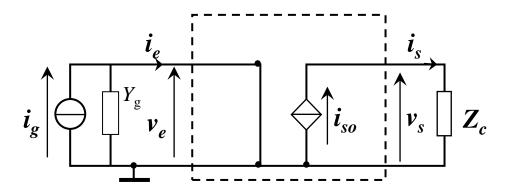
Chaque paire de bornes se comporte , vu de l'extérieur, comme un dipôle


**ROLE TRES IMPORTANT EN ELECTRONIQUE** 

(recouvre la plupart des applications!)

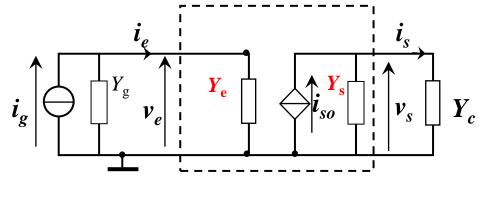


# Classification des amplificateurs


Fonction de transfert



| Ç | Entré | Sortie | Н                            | Nom                        |
|---|-------|--------|------------------------------|----------------------------|
|   | ue    | us     | <u>Av</u>                    | Amplification en tension   |
|   | ie    | is     | <u>Ai</u>                    | Amplification en courant   |
|   | ие    | is     | <u>Y</u> <sub><u>T</u></sub> | Trans-admittance           |
|   | ie    | us     | <u>Z</u> <sub>T</sub>        | Trans-impédance            |
|   | Pe    | Ps     | Ap                           | Amplification en puissance |


# Classification des amplificateurs

- Amplificateur de courant
  - Amplificateur parfait
    - Ne doit pas gêner la source
      - On retrouve toute le courant de la source
    - Ne doit pas être gêné par la charge
      - Source de courant parfaite
    - $\circ$  Présente une amplification en courant constante  $\forall f$



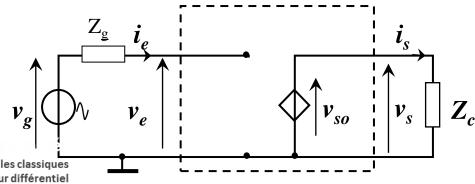
$$i_{so} = A_{i0}i_e$$

- Amplificateur imparfait
  - Admittance d'entrée non nulle
  - Admittance de sortie non infinie
  - o amplification non constante



 $i_{so} = A_{i0}i_e$ 



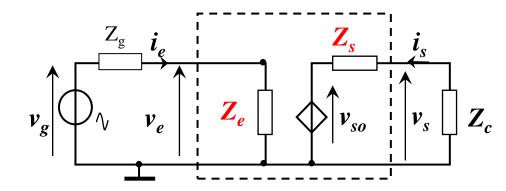

**Toutes les grandeurs sont complexes** 

# Classification des amplificateurs

- Amplificateur de tension
  - Amplificateur parfait
    - Ne doit pas gêner la source
      - On retrouve toute la tension de la source
    - Ne doit pas être gêné par la charge
      - Source de tension parfaite

amplificateurs: les classiques amplificateur différentiel

 $\circ$  Présente une amplification en tension constante  $\forall f$ 




$$v_{so} = A_{v0} v_e$$

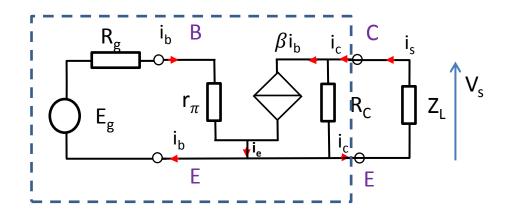
- Amplificateur imparfait
  - o Impédance d'entrée non infinie
  - Impédance de sortie de sortie non nulle
  - o amplification non constante

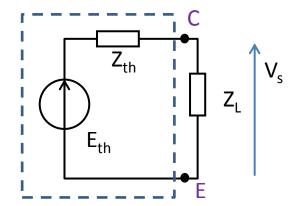


Toute les grandeurs sont complexes (barre omise pour faciliter les écritures!)



$$\underline{Z}_{e} = \frac{\underline{V}_{e}}{\underline{\underline{I}}_{e}}$$


$$v_{so} = A_{v0} v_{\epsilon}$$

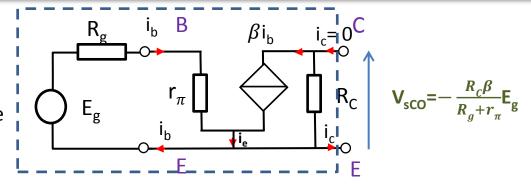

$$\underline{Z}_{S} = \frac{\underline{V}_{S0}}{\underline{-I}_{SCC}}$$



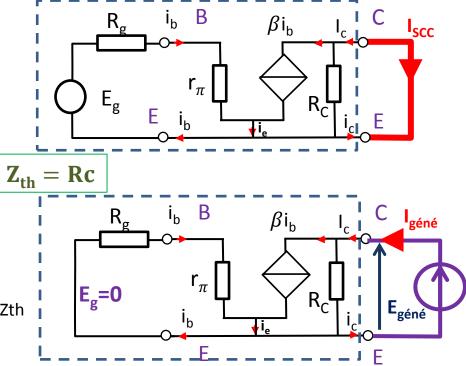
# Impédance de sortie

Cas des sources liées






- Les 2 possibilités
  - Je garde toutes les sources et j'exprime Vs sous la forme
    - » Vs=  $V_{so}$   $Z_s i_s$  avec Vs<sub>o</sub> une expression indépendante de  $i_s$  et fonction de  $E_g$ ,  $R_g$ ,  $\beta$ ,  $r_\pi$
    - » On identifie V<sub>so</sub>=Eth et Z<sub>s</sub>=Z<sub>th</sub>
  - J'applique les étapes classiques du théorème de thévenin en prenant garde d'éteindre les sources indépendantes et de conserver les sources liées

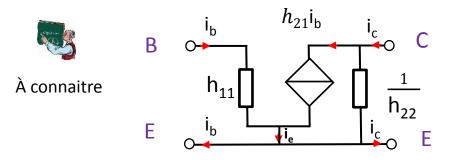



# Impédance de sortie

- Théorème de Thévenin
  - Calcul de E<sub>th</sub>
    - On déconnecte la charge
    - $\circ$  On exprime  $V_{sCO} = E_{th}$



- Calcul de Z<sub>th</sub>
  - 2 méthodes
    - Méthode du courant de court-circuit théorique
      - $\mathbf{z}_{\mathsf{th}} = \frac{E_{th}}{I_{SCC}}$
      - » On connait Eth . On exprime  $I_{SCC.}$
      - » On déduit Z<sub>th</sub>
    - Méthode du générateur en sortie
      - » On éteint les sources indépendantes
      - » On place un générateur externe en sortie
      - $\mathbf{z}_{\mathsf{th}} = \frac{E_{g\acute{e}n\acute{e}}}{I_{g\acute{e}n\acute{e}}}$
      - » On utilise l'arsenal du GE11 pour exprimer Zth






# Transistor: modèle dynamique (RAPPEL)

- ullet Modèle **dynamique** en  $\pi$ 
  - Modèle dit hybride (théorie des quadripôles)

$$\begin{bmatrix} \mathbf{v}_{\mathrm{BE}} \\ \mathbf{i}_{\mathrm{C}} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_{\mathrm{B}} \\ \mathbf{v}_{\mathrm{CE}} \end{bmatrix}$$



Les paramètres h sont complexes (Pour nous, en BF, partie complexe négligeable)

Nous néglirerons en TD l'influence de h<sub>22</sub>



Toutes les grandeurs sont alternatives dites « petit signal » Écritures équivalentes:  $\operatorname{di_b}$  ou  $\Delta i_b$  ou  $i_b$ 

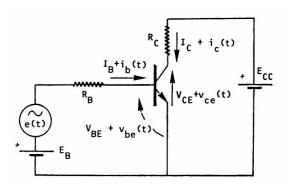
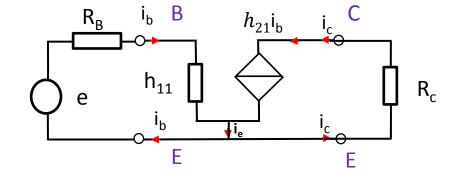
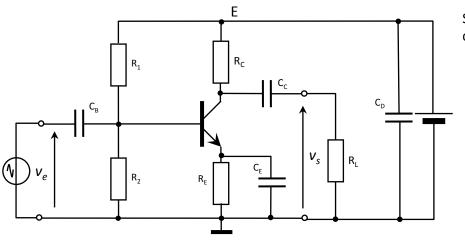
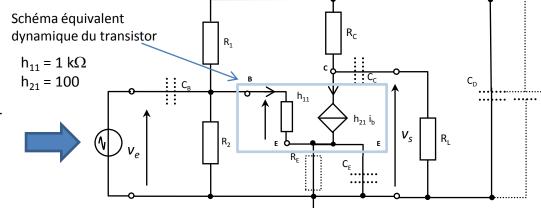
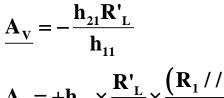




Schéma équivalent petit signal




# **Etude théoriques des amplificateurs**


- Les étapes pour l'étude d'un dispositif
  - Je dessine un schéma équivalent statique
    - J'éteinds les sources alternatives et je remplace les condensateurs par un circuit ouvert
    - Je remplace les composants par le modèle STATIQUE de mon choix
    - Je dessine un schéma équivalent statique
    - Je calcule le point de fonctionnement STATIQUE  $M_o(V_{x_0},I_{x_0})$ 
      - » En utilisant les outils du cours de signaux et circuits.
  - Je dessine un schéma équivalent dynamique
    - <u>J'éteinds les sources continues</u> et <u>je remplace les condensateurs par un fil</u> ( si Z<sub>c</sub><<Z<sub>montage</sub>)
    - Je remplace les composants par le modèle DYNAMIQUE de mon choix
    - Je dessine un schéma équivalent dynamique
    - Je calcule la réponse alternative  $\widetilde{v}_{\nu}(t)$
  - Le point instantanné de fonctionnement s'obtient en appliquant la superposition


$$V_x(t) = V_{x0} + \widetilde{v}_x(t)$$

## Montage émetteur commun

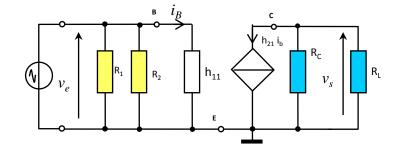
Montage émetteur commun





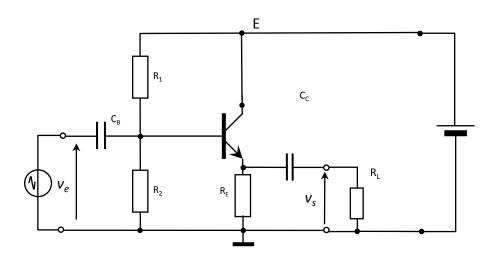


$$\underline{\mathbf{A}_{I}} = +\mathbf{h}_{21} \times \frac{\mathbf{R'}_{L}}{\mathbf{R}_{L}} \times \frac{\left(\mathbf{R}_{1} / / \mathbf{R}_{2} / / \mathbf{h}_{11}\right)}{\mathbf{h}_{11}}$$

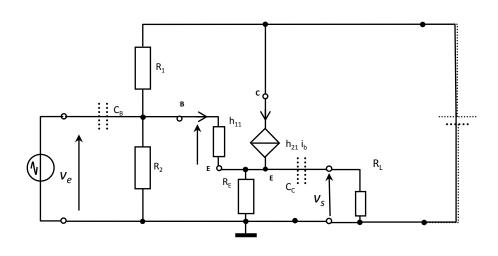

$$\mathfrak{R}_e = \left( \mathbf{R}_1 / / \mathbf{R}_2 / / \mathbf{h}_{11} \right)$$

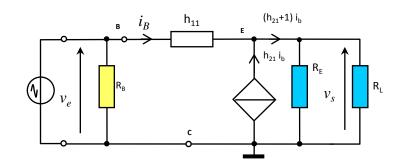
$$\Re_S = \mathbf{R}_{\mathbf{C}}$$




# Remise en forme plus lisible



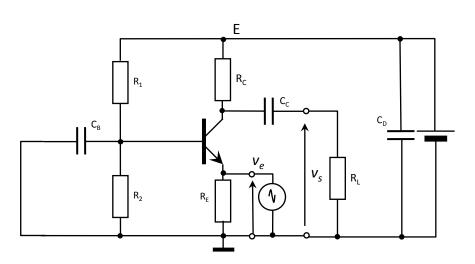



# Montage collecteur commun



$$\begin{split} & \underline{A}_{V} = + \frac{(h_{21} + 1)R'_{L}}{h_{11} + (h_{21} + 1)R'_{L}} \\ & \underline{A}_{I} = + (h_{21} + 1) \times \frac{R'_{L}}{R_{L}} \times \frac{R_{B}}{R_{B} + h_{11} + (h_{21} + 1)R'_{L}} \\ & \mathfrak{R}_{e} = R_{B} / / \left( h_{11} + (h_{21} + 1)(R_{E} / / R_{L}) \right) \\ & \mathfrak{R}_{S} = R_{E} / / \frac{h_{11} + (R_{B} / / R_{G})}{(h_{21} + 1)} \end{split}$$

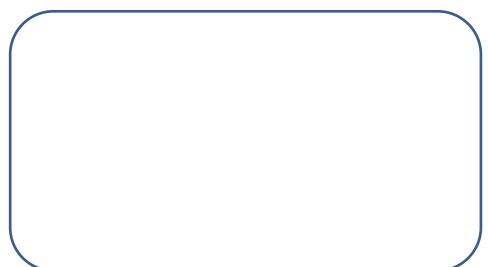


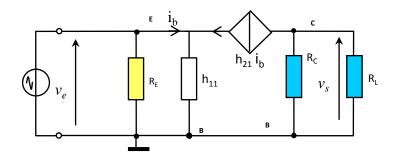










$$\underline{\mathbf{A}_{\mathbf{V}}} = + \frac{\mathbf{h}_{21} \mathbf{R'}_{\mathbf{L}}}{\mathbf{h}_{11}}$$

$$\underline{\mathbf{A}_{\mathbf{I}}} = + \frac{\mathbf{h}_{11} \mathbf{R}_{C}}{\left(\mathbf{R}_{C} + \mathbf{R}_{\mathbf{L}}\right) \left(\frac{\mathbf{h}_{11}}{\mathbf{R}_{E}} + \mathbf{h}_{21} + 1\right)}$$

$$\mathfrak{R}_{e} = \frac{\mathbf{h}_{11}}{\mathbf{h}_{21} + 1}$$

$$\mathfrak{R}_{S} \square \mathbf{R}_{C}$$







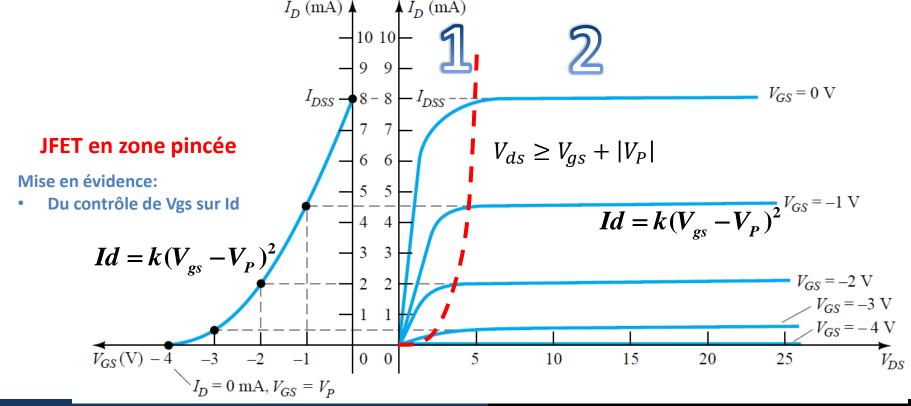
# Synthèse

# Ordres de grandeurs

| Montage   | EC      | CC       | ВС      |
|-----------|---------|----------|---------|
| Av        | -100    | +1       | +100    |
| <u>Ai</u> | +50     | +80      | -1      |
| Ap        | 5 000   | 80       | 100     |
| Re        | 1 000 Ω | 10 000 Ω | 10 Ω    |
| Rs        | 1 000 Ω | 10 Ω     | 1 000 Ω |



# Synthèse

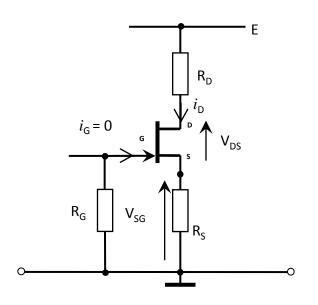

# **Applications**

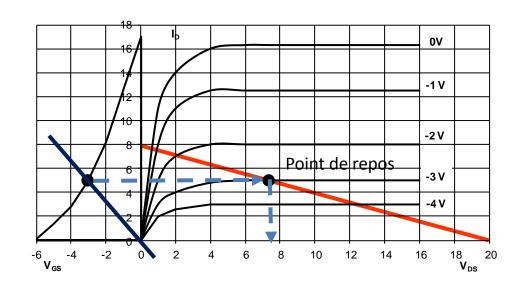
|                        | Emetteur Commun                                              | Base Commune                                                                               | Collecteur Commun                                |
|------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|
|                        | Moyenne                                                      | Basse                                                                                      | Elevée                                           |
| Impédance<br>d'entrée  | variable selon la polarisation,<br>de l'ordre de quelques kΩ | ordre de grandeur : quelques<br>dizaines Ω                                                 | Plus elevée qu'un montage<br>émetteur commun     |
|                        | Moyenne                                                      | Moyenne                                                                                    | Basse                                            |
| Impédance de<br>sortie | égale à Rc                                                   | égale à Rc                                                                                 | ordre de grandeur : quelques<br>dizaines Ω       |
| Phase<br>entrée/sortie | 180°                                                         | Phase                                                                                      | Phase                                            |
| Gain en tension        | Elevé                                                        | Elevé                                                                                      | Très légèrement inférieur<br>à 1                 |
| Utilisation            | C'est le montage de base,<br>on le retrouve partout.         | Montage utilisé en HF du fait<br>de sa bande passante<br>supérieure à l'émetteur<br>commun | C'est l'adaptateur<br>d'impédance par définition |



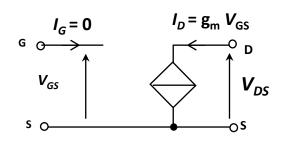
## Rappels: caractéristiques externes du JFET

- Réseau de caractéristiques
  - Comportement 1: zone de résistance commandé en tension  $r_{ds} = h(V_{GS})$
  - Comportement 2: source de courant commandé en tension  $I_d = f(V_{GS})$





Transistors à Effets de champs



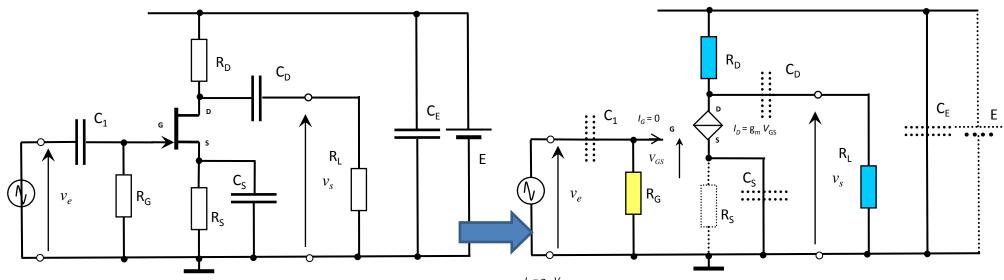

## Polarisation et modèle

Polarisation du transistor FET





Modèle petit signal




$$Id = k(V_{gs} - V_P)^2$$

#### Transistors à Effets de champs



# Montage à source commune



## résultats

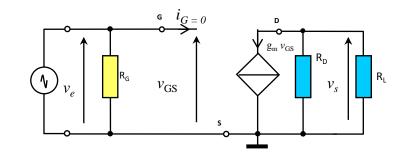
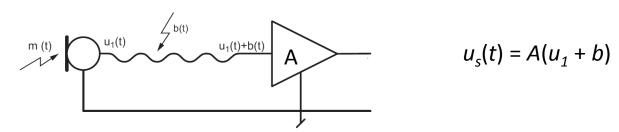
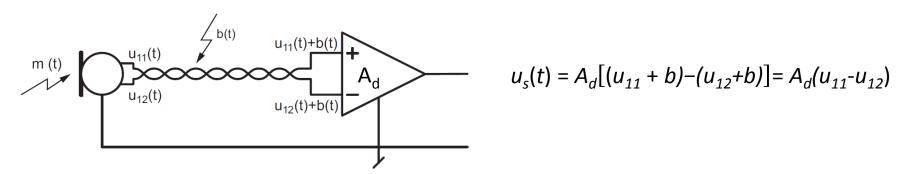





Schéma équivalent du transistor

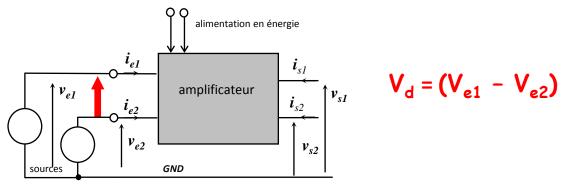



# Remise en forme plus lisible




## Intérêt des structures différentielles

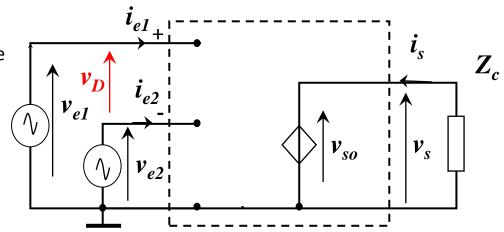
- Pourquoi utiliser un amplificateur différentiel ?
  - Un amplificateur normal amplifie le signal et le bruit :




Un amplificateur différentiel amplifie la différence entre 2 signaux, le bruit n'est donc pas amplifié :



## Modèles


- Modèle d'un amplificateur différentiel parfait
  - Les grandeurs « utiles » sont les tensions différentielles



 $V_d = (V_{e1} - V_{e2})$  et  $V_{sd} = (V_{s1} - V_{s2})$ 

- Amplificateur parfait (1 seule sortie)
  - o amplifier la différence des tensions en entrée
  - Supprime le mode commun
  - Ne gêne pas les sources d'entrées
  - N'est pas gêné par la charge

$$\underline{V_{\scriptscriptstyle S}} = \underline{V_{\scriptscriptstyle S0}} = \underline{A_{\scriptscriptstyle VD}} \times \underline{V_{\scriptscriptstyle D}}$$

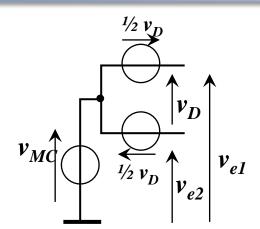




21

## Modèles

### Mode commun et différentiel


Définitions

Ve1 et ve2 s'exprime en fonction de:

la tension de mode commun:  $V_{MC} = \frac{1}{2} (V_{e1} + V_{e2})$ 

la tension de mode différentiel:  $V_{MD} = \frac{1}{2} V_d$ 

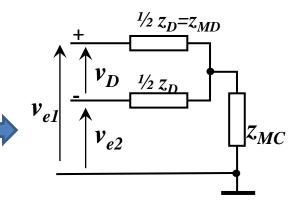
Avec  $V_d$  appelée tension différentielle



### Interprétation

• La tension de sortie s'exprime en fonction de la grandeur utile  $v_D$  mais aussi d'une grandeur parasite  $A_{MC}V_{MC}$  que l'on veut la plus petite possible

$$u_s(t) = A_+(V_{MC} + \frac{v_D}{2}) - A_-(V_{MC} - \frac{v_D}{2})$$
 avec si on tient compte du bruit  $V_{MC} = \frac{(Ve_1 + Ve_2)}{2} + b$   
 $u_s(t) = (A_+ + A_-)V_{MD} + (A_+ - A_-)V_{MC} = A_DV_D + AMCVMC$ 


- Imperfections de la réjection du mode commun
  - En réalité  $A_{+}=A_{-}+\varepsilon => A_{MC}=\varepsilon$  présente une valeur faible mais non nulle
  - On quantifie la qualité de l'ampli avec un taux de rejection de mode commun

$$CMRR_{dB} = 20log(\frac{A_d}{A_{MC}})$$

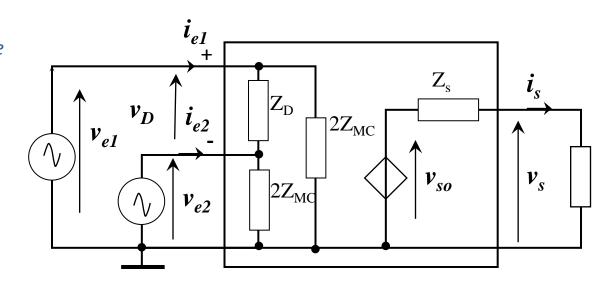
## Modèles



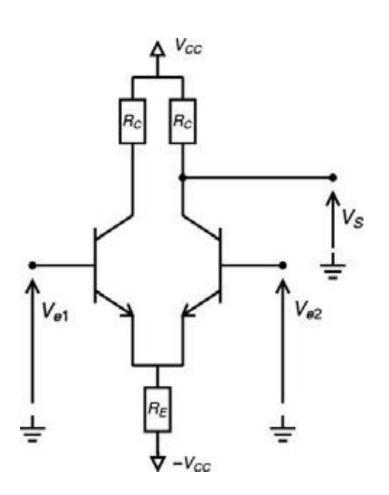
- Amplificateur différentiel imparfait
  - Amplifie la tension différentielle
  - Mais malheureusement aussi la tension de mode commun!
  - impédance différentielle et de mode commun non infinie
  - impédance différentielle et de mode commun non nulle



Nous avons pour la tension de sortie à vide


$$\underline{\underline{V_{S0}} = \underline{A_{VD}} \times \underline{V_D} + \underline{A_{VMC}} \times \underline{V_{MC}}}$$




Les constructeurs donne la valeur du taux de réjection de mode commun

$$CMRR = 20 \log \left( \frac{A_{VD}}{A_{VMC}} \right)$$

Ordre de grandeur courant: CCMR=1000 soit  $CCMR_{dB}$ = 60 dB



# La paire différentielle: polarisation

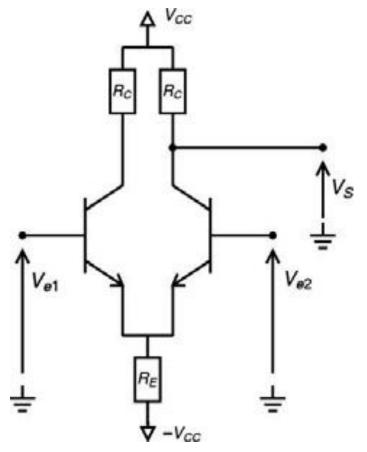


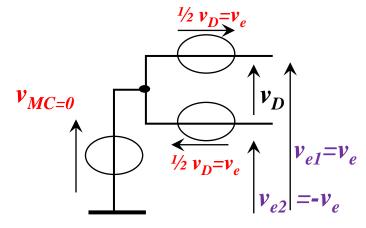
- Entrées : Ve1 et Ve2
- Sortie: collecteur d'un des transistors
- Hypothèse forte : T1 et T2 appariés 

  même circuit : identiques.

### Pour le calcul de la polarisation :

Ve1 = Ve2 = 0


Par symétrie :  $I_{F1} = I_{F2} = I_F$ 


Dans une maille {masse – E – B}, on a :  $I_E = \frac{V_{CC} - 0.7}{2R_E}$ 

Tension continue en sortie :  $V_S = V_{CC} - R_C I_E$ 

## La paire différentielle

Mode différentiel



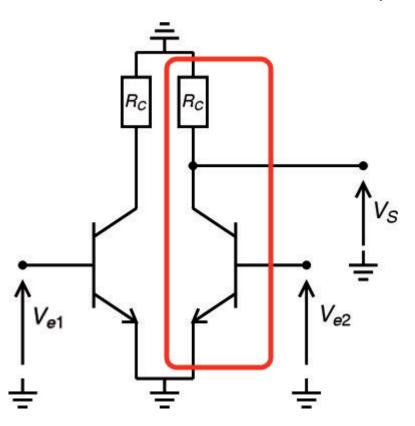


Nous régions  $v_{e1} = -v_{e2} = v_e$ 

Le courant devient

$$I_{E1} = I_E + i_{e1}$$

 $I_{E2} = I_E - i_{e2}$  avec IE le courant de polarisation.


Pour des signaux de faible amplitude : ie1 = ie2

$$I_{RE} = I_{E1} + I_{E2} = 2I_E = cte$$

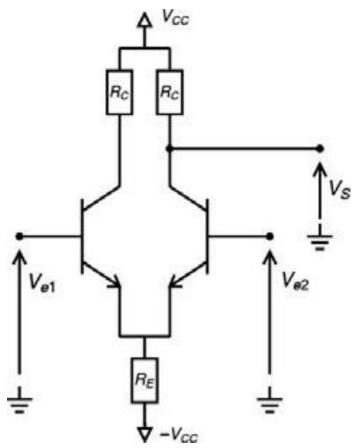
On a donc  $U_{RE} = 2R_E I_E = cte \Rightarrow E$  a donc un potentiel fixe  $\Rightarrow$  en petit signaux, c'est une masse

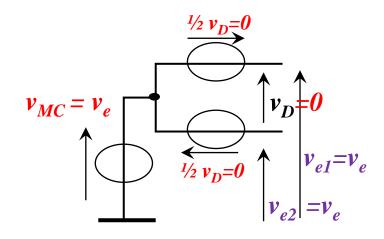
# La paire différentielle

Mode différentiel: modèle équivalent



Equivalent à 2 montages émetteur commun découplés.


$$v_{S} = -rac{eta R_{C}}{r_{be}}(-v_{E}) = rac{eta R_{C}}{r_{be}}v_{E}$$


Amplification différentielle :

$$A_{diff} = rac{eta R_C}{r_{be}} \gg 1$$

## La paire différentielle

Mode commun





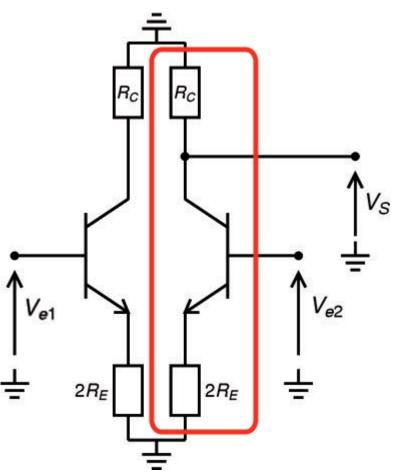
Nous régions 
$$v_{e1} = v_{e2} = v_e$$

$$I_{E1} = I_E + i_{e1}$$

 $I_{E2} = I_E + i_{e2}$  avec  $I_E$  le courant en continu.

Pour des signaux de faible amplitude : ie1 = ie2 donc

$$I_{RE} = I_{E1} + I_{E2} = 2I_E + 2i_e$$


On a donc 
$$U_{RE} = 2R_E I_E + 2R_E i_e$$

 $\Rightarrow$  en petit signaux (*ie*),

on obtient une résistance  $2R_E$  reliée à la masse.

# La paire différentielle

Mode commun: modèle équivalent



Equivalent à 2 montages **émetteur commun stabilisé** découplés.

$$v_{S} = -\frac{R_{C}}{2R_{E}}v_{E}$$

Amplification de mode commun

$$A_{com} = -\frac{R_C}{2R_F} \ll 1$$

$$TRMC = \left| \frac{A_{diff}}{A_{com}} \right| = \frac{2\beta R_E}{r_{be}}$$

## La paire différentielle

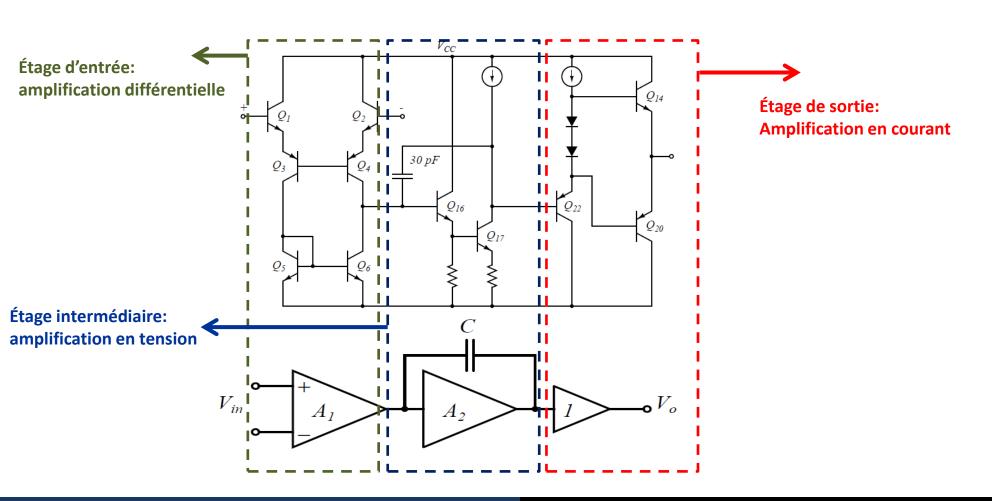
### Intérêt de la paire différentielle

- Impédance d'entrée élevée.
- TRMC élevé (> 60dB)

⇒ Utilisation comme étage d'entrée des ampli-op

Sortie ici vers les étages intermédiaires OFFSET NULL

Source de courant (structure dite wilson)


Paire différentielle darlington

Charge active (équivalente à des résistances de très grandes valeurs sous forme intégrées)



## Structure interne simplifiée d'un Aop

Décomposition en schéma blocs

