
A Appendices

A.1 Appendix: Gantt Chart

i

ID Task Name Duration Start Finish PredecesResponsible
Person

Difficulty

1 Ordering Parts 17 days Mon Feb 8 Tue Mar 2 Ewout
2 Cars Received 7 days Mon Feb 8 Tue Feb 16 easy
3 Wheel Encoders Received 10 days Wed Feb 17 Tue Mar 2 2 easy
4 Infrared Cameras Received 5 days Mon Feb 8 Fri Feb 12 easy
5 Sensor Component 19 days Mon Feb 22 Thu Mar 18
6 Wheel Encoders 10 days Wed Mar 3 Tue Mar 16 Ewout
7 Physical Mounting 5 days Wed Mar 3 Tue Mar 9 3,2 difficult
8 Power and Wiring 2 days Mon Mar 15 Tue Mar 16 19,3 average
9 Communication with Processor 4 days Wed Mar 3 Mon Mar 8 21,3 easy
10 Ultrasonic Rangefinders 18 days Mon Feb 22 Wed Mar 17 Ewout
11 Physical Mounting 2 days Mon Mar 15 Tue Mar 16 19 easy
12 Power and Wiring 1 day Wed Mar 17 Wed Mar 17 11 easy
13 Communication with Processor 4 days Mon Feb 22 Thu Feb 25 21 easy
14 Infrared Cameras 19 days Mon Feb 22 Thu Mar 18 Tri
15 Physical Mounting 2 days Mon Mar 15 Tue Mar 16 19,4 average
16 Power and Wiring 2 days Wed Mar 17 Thu Mar 18 15 easy
17 Communication with Processor 7 days Mon Feb 22 Tue Mar 2 21,4 difficult
18 Processing Component 30 days Mon Feb 8 Fri Mar 19 Kyle
19 Physical Mounting 3 days Wed Mar 10 Fri Mar 12 7 medium
20 Power 5 days Mon Mar 15 Fri Mar 19 19 easy
21 Basic Functionality 10 days Mon Feb 8 Fri Feb 19 medium
22 Vehicle Component 6 days Wed Feb 17 Wed Feb 24 Heather
23 Electronic Steering Controller 2 days Wed Feb 17 Thu Feb 18 2 easy
24 Steering Servomechanism 2 days Wed Feb 17 Thu Feb 18 2 easy
25 Communication with Processor 4 days Fri Feb 19 Wed Feb 24 23,24 medium
26 Algorithm Component 30 days Mon Mar 22 Fri Apr 30 All
27 Vehicle Tracking 5 days Mon Mar 22 Fri Mar 26 14,18 difficult
28 Point to Point Navigation 5 days Mon Mar 22 Fri Mar 26 6,18,22 difficult
29 Vehicle-Following Algorithm 5 days Mon Mar 29 Fri Apr 2 28,27 medium
30 Path Following Algorithm 8 days Mon Apr 5 Wed Apr 14 29 difficult
31 Optimization 12 days Thu Apr 15 Fri Apr 30 30,5 difficult
32 Deliverables 62 days? Wed Feb 10 Thu May 6 All
33 Written Proposal 1 day? Wed Feb 10 Wed Feb 10
34 Draft Project Summary 1 day? Wed Feb 24 Wed Feb 24
35 PDR Presentations Finished 1 day? Fri Mar 19 Fri Mar 19
36 Intermediate Assessment 1 day? Fri Mar 19 Fri Mar 19
37 Final Project Summary 1 day? Fri Apr 30 Fri Apr 30
38 Website 1 day? Thu May 6 Thu May 6
39 Final Project Presentation 1 day? Fri Apr 30 Fri Apr 30
40 Final Project Report 1 day? Thu May 6 Thu May 6

3/2

3/16

3/17

3/18

3/19

2/24

4/30

F S T T S M W F S T T S M W F S T T S M W F S T T S M W F S T T S M W F S T T S M W F S T T S
1, Feb 7, ' Feb 14, Feb 21, Feb 28, Mar 7, ' Mar 14, Mar 21, Mar 28, Apr 4, ' Apr 11, Apr 18, Apr 25, May 2,

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: schedule
Date: Wed Feb 10

A.2 Appendix: I/O Daughter Board Design and Component

Connections

iii

!

!"#$%&'()*+,$-.&,/$01230$3&4.'*$5$67,8'7*$

!

A.3 Appendix: Software Modules and Paths

v

MUX_2x1 -- VHD_Source\MUX_2x1.vhd
bestMatch -- VHD_Source\WiiVision\bestMatch.vhd
CameraXY -- VHD_Source\WiiVision\CameraXY.vhd
CLOCKDIV -- VHD_Source\clockdiv.vhd
CompareIt -- VHD_Source\WiiVision\CompareIt.vhd
COORD -- VHD_Source\Queue\coord.vhd
DIMMER -- VHD_Source\KITTstatus\dimmer.vhd
DisplacementUnit -- VHD_Source\Odometry\DisplacementUnit.vhd
DriveCommander -- VHD_Source\DriveCommander\DriveCommander.vhd
GCBD_MODULE -- VHD_Source\Odometry\gcbd_module.vhd
KITT_LIGHTS -- VHD_Source\KITTstatus\kitt_lights.vhd
POS_CONTROL -- VHD_Source\Queue\pos_control.vhd
PWM_FILTER -- VHD_Source\DriveCommander\pwm_filter.vhd
PWM_MODULE -- VHD_Source\DriveCommander\pwm_module.vhd
QUEUE -- VHD_Source\Queue\queue.vhd
QUEUE_CONTROL -- VHD_Source\Queue\queue_control.vhd
r2p_corproc -- VHD_Source\CORDIC\rect2polar\r2p_corproc.vhd
sc_corproc -- VHD_Source\CORDIC\polar2rect\sc_corproc.vhd
SteerCommander -- VHD_Source\DriveCommander\SteerCommander.vhd
wiiCamComms -- VHD_Source\WiiVision\wiiCamComms.vhd
WiiRefClock -- VHD_Source\WiiVision\WiiRefClock.vhd

A.4 Appendix: Datasheets

vii

!"#$%& '"" ()*+&) ,-.%/%)0 1/*)%/ ,-.+%*/&"+-
!"#$%&'()$" *$++,*(,- #%$& .'%)$/0 0$/%*,0 #$% (1, 2)34%(5)) 6,&$(, !"#%'%,- 7'&,%'8 0)"*, (1,%, '%,

"$ 9/:+)*+; '.')+':+, -'('01,,(0<

From Wiimote Wiki

1 Register Memory Map
2 Wavelengths
3 Initialization
4 Configuration

4.1 Sensor Gain
4.2 Blob Size Range

5 Output Formats
5.1 Short
5.2 Medium
5.3 Long

Register Memory Map
0xB00000 UNKNOWN
0xB00001 0x00
0xB00002 0x00
0xB00003 0x71
0xB00004 0x01
0xB00005 0x00
0xB00006 MAXSIZE
0xB00007 0x00
0xB00008 GAIN

0xB0001A GAINLIMIT
0xB0001B MINSIZE

0xB00030 CONTROL

0xB00033 MODE

UNKNOWN: Wii uses values: 2 (standard) and 7 (max sensitivity). No known function.
MAXSIZE: Maximum blob size. Wii uses values from 0x62 to 0xc8.
GAIN: Sensor Gain. Smaller values = higher gain.
GAINLIMIT: Sensor Gain Limit. Must be less than GAIN for camera to function. No other effect?
MINSIZE: Minimum blob size. Wii uses values from 3 to 5
CONTROL: Write 1 before configuring camera, 8 when done.

IR Sensor - Wiimote Wiki http://wiki.wiimoteproject.com/IR_Sensor

1 of 4 5/4/2010 1:13 PM

MODE: output format, 1, 3, or 5. See output formats below.
Other values: As used by Wii. Function not known.

These registers are mirrored every 0x100 bytes up to 0xB1FFFF

The following section or page relates to parts of the Wii Remote that are poorly understood.
Research and contribution in these areas is encouraged.

The sensor is at least 5 times more sensitive to 940nm than 850nm. This disparity increases slightly with the
removal of the filter window. Relative sensitivity to visible is not known.

Eight commands need to be issued to initialize the camera and request data from it. After each command, wait
for the 0x22 command status report and re-issue the command if it isn't received in a reasonable time. Note that
all writes are to register addresses (set 0x04 bit in first byte of the write report payload).

Enable IR Pixel Clock (report 0x13)1.
Enable Camera (report 0x1A)2.
Configure Camera:

Write 0x01 to register 0xb000301.
Write configuration block 1 to registers 0xb00000-08 (9 bytes)2.
Write configuration block 2 to registers 0xb0001A-1B (2 bytes)3.
Write mode number to register 0xb000334.
Write 0x08 to register 0xb000305.

3.

Select output report compatable with mode (report 0x12)4.

The camera configuration is somewhat unknown. Shutter time and frame rate appear to be directly determined
by the pixel clock, which is an external input not controllable via software. The following settings, however, can
be controlled over bluetooth:

The byte labeled GAIN controls the camera gain. Lower values result in higher sensitivity. Numerical gain is
proportional to 1/2 (̂n/16) for n<0x40, but decreases more linearly after that. Translation: for small values,
dropping this value by 0x10 doubles sensitivity. Usable values are from about 15 to 254. Below that results in
noise and streaking becomes significant and the camera doesn't function for a value of 255.

A configuration byte in the second block, GAINLIMIT, must have a value less than GAIN for the camera to
function. Otherwise it appears to have no effect. This byte may be related to an automatic gain control feature,
but the enable for this feature has not been found.

IR Sensor - Wiimote Wiki http://wiki.wiimoteproject.com/IR_Sensor

2 of 4 5/4/2010 1:13 PM

The bytes labeled MAXSIZE and MINSIZE controls the range of a blob sizes that will be reported. The numbers
appear to be approximately the number of sensor pixels in the blob blob can occupy.

For max, the Wii uses values in the range 0x62 to 0xC8, but values as low as 0x20 can be useful in specialized
situations. Small values can be useful for controlling background noise and if point merging when tracking
multiple points would have negative consequences. Large values allow large, unfocused, or diffuse blobs to be
tracked.

For min, very small numbers work best. The Wii uses values from 3 to 5, depending on sensitivity settings.

Output Mode value: 1

Usable with reports 0x36 and 0x37

BYTE BIT 7 6 5 4 3 2 1 BIT 0
0 X0[7:0]
1 Y0[7:0]
2 Y0[9:8] X0[9:8] Y1[9:8] X1[9:8]
3 X1[7:0]
4 Y1[7:0]
5 X2[7:0]
6 Y2[7:0]
7 Y2[9:8] X2[9:8] Y3[9:8] X3[9:8]
8 X3[7:0]
9 Y3[7:0]

Output Mode value: 3

Usable with report 0x33

The following structure is repeated 4 times.

BYTE BIT 7 6 5 4 3 2 1 BIT 0
0 X[7:0]
1 Y[7:0]
2 Y[9:8] X[9:8] S

IR Sensor - Wiimote Wiki http://wiki.wiimoteproject.com/IR_Sensor

3 of 4 5/4/2010 1:13 PM

Output Mode value: 5

Usable with report 0x3E/F

The following structure is repeated twice in each report.

BYTE BIT 7 6 5 4 3 2 1 BIT 0
0 X[7:0]
1 Y[7:0]
2 Y[9:8] X[9:8] S
3 0 XMIN
4 0 YMIN
5 0 XMAX
6 0 YMAX
7 0 0 0 0 0 0 0 0
8 INTENSITY

Retrieved from "http://wiki.wiimoteproject.com/IR_Sensor"

Category: Unknown

This page was last modified 09:25, 10 November 2008.
Content is available under GNU Free Documentation License 1.2.

IR Sensor - Wiimote Wiki http://wiki.wiimoteproject.com/IR_Sensor

4 of 4 5/4/2010 1:13 PM

T H U R S D A Y , S E P T E M B E R 4 , 2 0 0 8

Working with the PixArt camera directly

This has been a pretty whirlwind past few months. Lots of things have happened, almost none
of which procrastineering related which is why I haven't posted anything here. But, one of the
things that I have poked at in the past few weeks was creating a PixArt to USB-HID device
which allows the camera from the Wiimote to appear as a relatively easy to access USB
device. This addresses several problems with using the Wiimote such as running off batteries
for extended periods and flakey platform specific Bluetooth drivers. It's also possible to read
from the Pixart cam at over 100Hz if you read directly via I2C as well as track visible dots once
you remove the IR filter. Of course, none of this was discovered by me. All credit belongs to the
numerous individuals who have contributed thier knowledge to the various Wiimote hacking
websites. Normally, this project wouldn't be worth a post, but all the information on how to do
this is pretty scattered and difficult to follow. So, I figured I would contribute by trying to making
this all a bit clearer.

This project is fairly advanced. You must be comfortable with working with microcontrollers.
Several simpler devices such as the Arduino or the Basic Stamp may work, but I used the
18F4550 PIC Microcontroller which provides built-in full-speed USB capabilites. But first, let talk
about the PixArt camera:

Here's the pinout thanks to kako and a PCB picture. The Reset pin is active low, so use a pullup
resistor to Vcc. The Wiimote runs the camera with a 25Mhz clock, but it also works with a
20Mhz clock so you might get away with fudging this a bit. The I2C communication is fast
400Khz and the slave device address is 0xB0. Most microcontroller development platforms
h ld i l d I2C i ti biliti If d 't t b tt d kit)

Share Report Abuse Next Blog» Create Blog Sign In

Procrastineering - Project blog for Johnny Chung Lee: Working with the P... http://procrastineering.blogspot.com/2008/09/working-with-pixart-camera...

1 of 3 5/4/2010 1:15 PM

should include I2C communication capabilities. If yours doesn't, get a better dev kit =o).
Desoldering the camera can be hard with so many pins. But, careful use of a hot air gun
will do the trick. The first part is to initialize the camera over I2C. Here's the pseudo
code for initializing to maximum sensitivity (actual CCS C code in comments):

1. write(hex): B0 30 01
2. wait 100ms
3. write(hex): B0 00 00 00 00 00 00 00 90 //sensitivity part 1
4. wait 100ms
5. write (hex): B0 07 00 41 //sensitivity part 2
6. wait 100ms
7. write(hex): B0 1A 40 00 //sensitivity part 3
8. wait 100ms
9. write(hex): B0 33 03 //sets the mode
10. wait 100ms
11. write(hex): B0 30 08
12. wait 100ms

It's still somewhat mysterious to me what all these mean, but in this mess is the
sensitivity and mode settings described at Wiibrew. The above code uses the sensitivity
setting suggested by inio "00 00 00 00 00 00 90 00 41, 40 00" experssed in the 2nd,
3rd, and 4th message. The wait times are conservatively long. After you initialize, you
can now read samples from it:

1. write(hex): B0 37 //prepare for reading
2. wait 25us
3. write(hex): B1 //read request
4. read 8 bytes
5. wait 380us
6. write(hex): B1 //read request
7. read 4 bytes

This yeilds one sample from the camera containing 12 bytes, 3 for each of the 4
potential points. The format of the data will be the Extended Mode (X,Y, Y 2-msb, X 2-
msb, Size 4-bits). The wait timings approximate what the Wiimote does. I've called this
routine 1000 times per second without ill effect. Though, I doubt this is actually scanning
the sensor and instead is just reporting the contents of an interal buffer. But, people
claim 200Hz updates are possible. So, you can use that as a suggestion.

Hooking this up to your microcontroller is pretty straight forward. Give the camera 3.3v
power using a voltage regulator, ground, a 20-25Mhz clock, and connect the SDA and
SCL lines (don't forget your pull up resistors), and pull up the reset pin.

The CCS C Compiler for the PIC18F4550 includes USB-HID sample code. It's simply a
matter of stuffing the data you got from the PixArt camera into the input report buffers

for the USB. With this, you could actually create a USB mouse profile and make it
control the cursor without any software or drivers at all. If set it up as a full speed
device, it's possible to get 1ms reports providing extremely low latency updates. CCS
provides relatively affordable PIC programmers as well. Explaining how to set all this up
is not within the scope of this post, but it should be plenty to get you started. If you want
to make a PCB, you can try ExpressPCB which can get you boards in-hand for as low
as $60.

Update 9/6/08: Just a note about the clock. Since my PIC was using a 20Mhz
resonator, I just piggy backed the Pixart clock pin off the OSC2/CLKO pin of the PIC
which seemed to work fine. Also, Kako has more details (in Japanese) on doing this
with an Arduino

A.5 Appendix: Top Level Software Diagram

ix

